EIC ACCELERATOR COLLABORATION MEETING 2019

IR Magnets – Recent Advances

GianLuca Sabbi Lawrence Berkeley National Laboratory

Acknowledgements

M. Anerella, J. Cozzolino, R. Palmer, B. Parker, S. Plate, J. Schmalzle, H. Witte, P. Wanderer (BNL) T. Michalski, P. Ghoshal, F. Lin, V. Morozov, R. Rajput-Ghoshal, R. Yoshida, M. Wiseman (JLAB) Y. Cai, Y. Noscokhov, M. Sullivan (SLAC)

Presentation Outline

- 1. IR Magnet requirements
- Conductor and Technology Options
- 3. Magnet parameters and features
 - Downstream ion quadrupoles
 - Upstream ion quadrupoles
 - Electron Quadrupoles
- 4. Magnetic design and field quality
 - Magnet straight section
 - Coil ends
- 5. High Gradient Quadrupole R&D
- 6. Summary

EIC IR Design Requirements

Experimental:

- Acceptance of charged and neutral particles in the forward direction of the hadron beam
- Operation in a wide range of beam energy
- Limit background and detector damage from e-beam synchrotron radiation

Accelerator and IR magnets:

- Combined large aperture and gradient in downstream ion quadrupoles for acceptance and small beam size at the IP
- Good field quality from low to high current
- Compact designs and/or interleaved electron and ion magnets in order to minimize crossing angle and crab cavity system requirements
- Control magnet fringe fields to minimize perturbations on adjacent beam
- Individually optimized magnets to address local constraints and maximize performance

Conductor Options

Material	Max. Field	Reaction	Max stress/strain	Insulation	Coil Parts
NbTi	10-11 T	N/A	Limited by coil composite	Polyimide	G-10
Nb ₃ Sn	17-19 T	~650 C	σ_{θ} < 200 MPa, ε_{z} < 0.2%	Fiberglass/epoxy	Ti, Stainless

- All present designs for both eRHIC and JLEIC IR magnets are based on NbTi
- Compact Nb₃Sn quadrupoles are being explored by the EIC R&D program

Magnet Design and Fabrication: Cosθ Coils

• The $cos(n\theta)$ coil layout with keystone Rutherford cable has dominated accelerator applications to date due to its efficiency and field quality

- This layout is compatible with both NbTi and Nb₃Sn magnet technology
- However, it requires complex tooling which is specific to each design

Magnet Design and Fabrication: Direct Wind

An automated process providing flexibility in the winding pattern of NbTi coils without a need for dedicated tooling

Main steps in the coil fabrication process:

- Support tube is placed on a rotating support and wrapped with epoxy substrate.
- The conductor is epoxy coated and placed in the desired pattern by a winding head mounted on a gantry
- Ultrasonic heating bonds the conductor to the substrate
- After each layer is completed, gaps are filled with spacers (e.g. G10) and epoxy to provide a winding surface for next layer
- A fiberglass wrap is wound under tension to compact the coil layers and provide radial support
- A high temperature cure completes the coil
- Well suited for complex winding patterns, compactness, active shielding in a moderate field /force range
- Successfully applied to special magnets for: HERA-II, BEPC-II and ILC IR,
 J-PARC and BTeV correction coils, Alpha anti-hydrogen trap

Downstream Hadron Quadrupole Parameters

Parameter	Unit	iQDS1a	iQDS1b	iQDS2	Q1ApF	Q1BpF (Q2eF)	Q2pF
R _{bore}	mm	92	123	177	56	78 (63)	131
G _{normal}	T/m	-37.2	-37.2	26.0	-72.6	-66.2 (8.0)	40.7
G x R _{bore}	T	3.4	4.6	4.6	4.1	5.2 (0.5)	5.3
Z _{IP}	m	8	11	16	9	11	14
L _{magnetic}	m	2.25	2.25	4.5	1.46	1.61	3.80

Downstream Hadron Quadrupole Features

Both JLEIC and eRHIC:

- Very large aperture, high field, forces, stored energy
- Cos (2 θ) coil layout, strong (collar-based) mechanical structure, high pre-load
- Challenging space constraints, both transverse and longitudinal

JLEIC:

- Aperture range 184-354 mm, pole tip field range 3.4-4.6 T
- Larger transverse envelope available (larger crossing angle): independent hadron/electron magnet cold masses

eRHIC:

- Aperture range 112-262 mm, pole tip field range 4.1-5.3 T
- Quads are tilted and shifted relative to the beam axis: minimize aperture,
 maximize iron on the electron beam side avoiding a tapered coil geometry
- No longitudinal gap and bam proximity → Q1BpF/Q2eF in common yoke

Very Large Aperture NbTi Quadrupoles

Magnet	Gradient (T/m)	Bore ID (m)	FoD* $- G^2R^3$ (T/m) $^2m^3$
RHIC IRQ	48	0.13	5.1
eRHIC Q1ApF	72.6	0.112	7.4
JLEIC iQDS1a	37.2	0.184	8.6
CERN ISR	40	0.20	12.8
JLAB Hall C, Q3	7.9	0.6	13.5
AHF Case II	10.3	0.51	14.1
eRHIC Q1BpF	66.2	0.156	16.6
JLEIC iQDS1b	37.2	0.246	20.6
eRHIC Q2pF	40.7	0.262	29.8
JLEIC iQDS2	26	0.354	30
JLAB Hall C, Q2	11.8	0.6	30.1
HIF RPD FFQ	24.2	0.51	77.7

(*) Ref: J. Waynert et al, IEEE Trans. Appl. Supercond. Vol. 11, March 2001, pp. 1522

BNL RHIC IRQ

Upstream Hadron Quadrupole Parameters

Parameter	Unit	iQUS1a	iQUS1b	iQUS2	Q1ApR	Q1BpR	Q2pR
R _{bore} (min/max)	mm	30	30	40	20 / 26	28	54
G _{normal}	T/m	-97.9	-97.9	94.1	-78.4	-78.4	33.8
G x R _{bore}	Т	2.9	2.9	3.76	-2.0	-2.2	1.83
Z _{IP}	m	5	7	10	6	8	13
L _{magnetic}	m	1.45	1.45	2.1	1.8	1.4	4.5
JLEIC 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5				otral oceR oleR oleR oleR			

Upstream Hadron Quadrupole Features

Both JLEIC and eRHIC:

- Main design parameters (aperture, field, forces etc.) are in the typical range for high energy colliders
 - JLEIC design is more compact with shorter/higher field magnets

JLEIC:

- Cos 2θ technology; outer envelope is sufficient for support structure and flux return
- Combination of field and aperture favors a two-layer coil with a ~8 mm wide cable
 - A single layer coil with a ~15 mm cable may also be considered

eRHIC:

 Close proximity between hadron and electron beam: Q1ApR is tapered and integrated in a common yoke with Q1eR

Electron Quadrupole Parameters

Electron Quadrupole Features

Both JLEIC and eRHIC:

- Basic parameters (aperture, field, forces etc.) are easily achievable
- Main challenge is due to space constraints both on the bore side (synchrotron radiation) and on the outer envelope (proximity of ion beamline)
 - Control field quality and fringe fields

JLEIC:

• Use standard $\cos 2\theta$ technology, but standardize the coil design by using same aperture and length for all magnets (yoke OD is adjusted to available space)

eRHIC:

- Take advantage of direct-wind technology, tailoring each magnet to the specific requirements
 - Some magnets are tapered and use helical coils to control the gradient
 - In some case electron and ion lines are integrated in the same yoke
- Forward magnets further from the IP (Q3,4,5) are normal conducting

Magnet Field Quality: Geometric Errors

<u>Interface with DA studies</u>: field error table including systematic, uncertainty on systematic, and random components

Errors are defined by harmonic expansion: $B_y + iB_x = B_2 10^{-4} \sum_{n=1}^{\infty} \overline{c}_n \left(\frac{x + iy}{r_0} \right)^{n-1}$

Harmonic coefficients combine normal and skew components: $\bar{c}_n = b_n + i a_n$

Random errors:

- Effect of fabrication tolerances by Monte Carlo calculation
- Conductor positioning within $\pm 50~\mu m$ is usually achieved in $\cos\theta$ magnet production
- Larger errors may be expected for first (only) units or other design/fabrication methods
- Scaling data from production of similar magnets is also possible

Random errors (1 sigma) for ±100 µm block displacements

Systematic effects: Iron Saturation

- Operation over a large energy/field range compared to other colliders
- Limited options for yoke optimization due to transverse space constraints
 - Increased distance between yoke OD and coil, increased iron thickness, introduction of features (e.g. holes) to make saturation more uniform
- Requires a specific analysis of each individual magnet
- Cross-section can be modified to shift of the entire curve by a fixed value

Coil End Optimization: Field Quality

- Integrated harmonics can be corrected with spacers but total magnet length will increase
- For higher order harmonics, need to split blocks
- Feedback from AP will provide guidance

Coil End Optimization: Peak Field

- Coil field may increase by 10-20% in the ends
- Terminating the yoke would increase the fringe field
- Increased block spacing is required to avoid loss of margin

Integrated Electron-Hadron Magnet Analysis

 Models incorporating both beamlines are implemented to study the field errors induced by the adjacent magnets

High Gradient Nb₃Sn Quadrupole R&D

- Nb₃Sn technology is more complex but may offer significant advantages to EIC
 - Higher gradient \Rightarrow shorter length \Rightarrow smaller aperture \Rightarrow iterate
- A short model demonstrator is being developed as part of the EIC R&D effort
- Design focus is on compact mechanical structure and reducing the fringe field

Design Parameters	Unit	Value
Clear aperture	mm	120
Gradient	T/m	133
Peak Field	Т	9.3
Current (main coil)	kA	13.6
Current (shield coil)	kA	0.7

Gradient × R_{coil} ≈ 8 T Gradient = 132.6 T/m 200 $I_{main} = -13.61 \text{ kA}$ 180 Ishield = 705 A 160 NbTi BNL Direct Wind 140 **Active Shield Coil** 120 Nb₃Sn HQ 100 ∠ Main Coil **Optional Passive** Magnetic Shield 60 (3 mm) 40 120 160 200 -160 -120 -80 40 80 X (mm) |B| (T) 9.295 4.66

Recent progress: 4 LARP HQ coils selected, QA'd and shipped to BNL; structure design is complete and procurements under way

Large Aperture Dipoles

- Design requirements: very large bore and proximity/overlap with electron beam line
- Two examples from eRHIC are shown, but design solutions are also applicable to JLEIC

Summary

- The EIC physics goals place demanding requirements on the Interaction Region layout and magnets
- Significant variety of designs parameters and conditions across the IR
 - Large aperture, high field, proximity of beamlines, detector interface
- A broad range of technologies are being explored to meet these challenges
 - Advanced configurations to fit into the available space and reduce coupling
 - Coil fabrication: combination of traditional approaches, recent advances from HEP colliders and special techniques for flexibility of conductor placement
- Several examples which are representative of the main design challenges and proposed solutions were presented
 - Individual designs were developed for either eRHIC or JLEIC, but they are generally applicable to both colliders
- Current designs are based on NbTi to minimize development time, cost and risk
- A Nb₃Sn quadrupole is under development to address specific EIC and could open the way to alternative layouts with improved performance